# ADAS: Data Engine ```{toctree} :hidden: ch0_business_challenge ch1_ml_problem_framing ch2_operational_strategy ch3_pipelines_workflows ch4_testing_strategy ch6_data_ingestion_workflows ch7_scene_understanding_data_mining ch8_model_training ch9_packaging_promotion ch10_deployment_serving ch11_monitoring_continual_learning ch12_cost_lifecycle_compliance ch13_reliability_capacity_maps ``` ## #### ##### ###### [Business Challenge and Goals](ch0_business_challenge.md) ###### [ML Problem Framing](ch1_ml_problem_framing.md) ###### [Project Planning, Operational Strategy](ch2_operational_strategy.md) ###### [Workflows, Team, Roles](ch3_pipelines_workflows.md) ###### [End to End MLOPS Testing Strategy](ch4_testing_strategy.md) ###### [Data Ingestion Workflows](ch6_data_ingestion_workflows.md) ###### [Scene Understanding & Data Mining](ch7_scene_understanding_data_mining.md) ###### [Model Training & Experimentation](ch8_model_training.md) ###### [Packaging, Evaluation & Promotion](ch9_packaging_promotion.md) ###### [Deployment & Serving](ch10_deployment_serving.md) ###### [Monitoring & Continual Learning](ch11_monitoring_continual_learning.md) ###### [Cost, Lifecycle, Compliance](ch12_cost_lifecycle_compliance.md) ###### [Reliability, Capacity, Maps](ch13_reliability_capacity_maps.md) * Inference - [PyTorch Quantization](https://pytorch.org/docs/stable/quantization.html) - https://hamel.dev/notes/serving/ ML Serving - **https://openai.com/index/triton/ : Introducing Triton: Open-source GPU programming for neural networks** ## TODO ### Scene Understanding & Data Mining - OpenSearch Indexing, Semantic Search - How OpenSearch and GraphQL API works together - Embedding models for images, text and LiDAR - Vector DB indexing/search Algorithms: HNSW, IVF-PQ - Details of Scenes/Triggers/Scenarios - Full list of cases - List of 3-5 challenging cases (multi-turn curate -> train -> deply -> monitor -> improve -> curate) ### Training - **Use Ray for Distributed Training ?** - Training - Task balancing for multi-head models (e.g., HydraNet-style): dynamic or curriculum weighting. - Model Testing - Full list of test cases - Slices - Regressions - HPO - Baseline config (train.yaml) with search space: LR/WD, warmup, aug policy, loss weights, NMS/score thresholds, backbone/neck options, EMA on/off, AMP level, batch size/accum steps. - Sweep strategy: Bayesian, Hyperband/ASHA, Random, or Population-Based Training (PBT) for long runs.